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Abstract. We investigate differential in-plane and out-of-plane flow observables in heavy-ion reactions at
intermediate energies from 0.2–2 AGeV within the framework of relativistic BUU transport calculations.
The mean field is based on microscopic Dirac-Brueckner-Hartree-Fock (DB) calculations. We apply two
different sets of DB predictions, those of ter Haar and Malfliet and more recent ones from the Tübingen
group, which are similar in general but differ in details. The latter DB calculations exclude spurious
contributions from the negative-energy sector to the mean field which results in a slightly softer equation
of state and a less repulsive momentum dependence of the nucleon-nucleus potential at high densities and
high momenta. For the application to heavy-ion collisions in both cases non-equilibrium features of the
phase space are taken into account on the level of the effective interaction. The systematic comparison
to experimental data favours the less repulsive and softer model. Relative to non-relativistic approaches
one obtains larger values of the effective nucleon mass. This produces a sufficient amount of repulsion to
describe the differential flow data reasonably well.

PACS. 25.75.-q Relativistic heavy-ion collisions – 25.75.Ld Collective flow – 25.70.Mn Projectile and
target fragmentation – 21.65.+f Nuclear matter

1 Introduction

Relativistic heavy-ion collisions have been extensively in-
vestigated to determine the nuclear equation of state
(EOS) far away from saturation and at finite temperature,
using semi-classical transport models of the Boltzmann
type [1,2]. The nuclear EOS which enters into a transport
description via density and momentum-dependent mean
fields has mostly been based on phenomenological con-
siderations by adjusting the parameters to nuclear-matter
saturation properties and to the momentum dependence
of the empirical nucleon-nucleus optical potential [3]. Such
parametrisations, as, e.g., Skyrme-type potentials [4], im-
ply different extrapolations to high and low densities and
high momenta, which should be tested in heavy-ion reac-
tions. Thus, there have been many efforts to determine the
density and momentum dependence of the nuclear mean
field by studying the different aspects of the collective flow
in intermediate energy heavy-ion collisions between 0.1–2
AGeV (SIS energies) [4–15].

On the other hand, it is well known that hadrons gen-
erally change their properties in the medium. This basic
feature is already incorporated in the simplest version of
a relativistic hadronic model for nuclear matter, namely
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linear Quantum Hadron Dynamics (QHD) [16], where the
effective nucleon mass drops with density. To obtain a rea-
sonable compressibility, scalar self-interaction terms are
introduced and finite nuclei are well described [17]. At
much higher densities, i.e. for the description of neutron
stars, also non-linear terms of the vector mean field are re-
quired [18]. These different treatments reflect the inherent
uncertainties in density extrapolations away from the sat-
uration point. More recent and systematic approaches try
to fix the relevant terms, e.g. by density functional expan-
sions of generalised QHD Lagrangians [19,20] which effec-
tively incorporate the basic features of chiral symmetry
and its breaking. However, predictions for high densities
remain questionable since effective field theory provides a
low-density expansion scheme valid in the vicinity of the
nuclear saturation point and below [20,21].

An alternative approach to the density and momen-
tum dependence of the mean field is provided by micro-
scopic many-body models. Here the nucleon-nucleon (NN)
interaction is fixed by free NN-scattering and no param-
eters are adjusted to the nuclear-matter problem. In the
relativistic Dirac-Brueckner-Hartree-Fock (DB) approach
[22–27] the NN-interaction is based on modern one-boson-
exchange (OBE) potentials [28] and the in-medium ladder
diagrams are summed self-consistently. This approach de-
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scribes the nuclear-matter saturation properties very rea-
sonably, albeit not perfectly. There exist good arguments
why DB should be still reliable at higher densities. As
pointed out in [29] the non-local structure of the OBE po-
tentials accounts already effectively on the two-body level
for some features of many-nucleon terms, e.g., intermedi-
ate ∆-excitations, and higher-order effects cancel to large
extent. Then the success of non-linear QHD Lagrangians
can be understood in that these models parametrise phe-
nomenologically the density dependence of the micro-
scopic DB predictions [30]. However, the constraints from
finite nuclei on the explicit form of the different fields are
limited since the single-particle potential results from the
cancellation of large scalar and vector potentials. Only
the spin-orbit interaction allows to constrain the magni-
tude of the effective mass [17,19,27]. On the other hand,
in energetic heavy-ion reactions scalar and vector fields
are decoupled by their different Lorentz transformation
properties, in the sense that they can be tested indepen-
dently, and additional information on the structure of the
potential can be obtained. Thus, within the DB frame-
work there is a chance to attempt a unified description of
different nuclear systems, i.e. free NN-scattering, nuclear
matter, finite nuclei and heavy-ion collision.

However, relativistic Brueckner calculations are not
straightforward and the approaches of various groups [23–
26] are similar but differ in detail, depending on the solu-
tion techniques and the particular approximations made.
In the present work we therefore want to study the DB pre-
dictions for the nuclear mean field in more detail in heavy-
ion collisions. In previous studies [14,15] a qualitative
agreement with collective flow observables has been found.
Recently more detailed experiments have been performed
for differential components of the collective flow [31]. In
particular, the rapidity and transverse momentum depen-
dence of collective flow has attracted much theoretical in-
terest because of their strong sensitivity to the momentum
dependence of the nuclear mean field [12]. Here we test the
self-energies, i.e. the nuclear EOS, from two different DB
calculations, from ter Haar and Malfliet [24] and from a
more recent study performed by the Tübingen group [25,
26].

In heavy-ion collisions a further difficulty arises due to
the non-equilibrium features of the phase space configura-
tions. This has been discussed extensively in refs. [14,15].
In a fully consistent treatment, one would have to solve
the coupled set of DB equations for the effective interac-
tion in non-equilibrium nuclear-matter configurations si-
multaneously with the kinetic equations for the evolution
of a phase space distribution [23]. However, such a pro-
cedure has not been realized yet, and further approxima-
tions are necessary in heavy-ion collisions. In the local
density approximation (LDA) the nuclear-matter mean
fields are directly used in the transport calculation. How-
ever, this approximation is not reliable enough at inter-
mediate energies, because the local momentum space is
highly anisotropic during a large part of the heavy-ion col-
lision [15,32,33]. A better approximation is the colliding
nuclear-matter (CNM) approach, where the phase space

anisotropies are parametrised by two inter-penetrating
nuclear-matter currents, i.e. the local momentum space
is given by two Fermi spheres, or covariant Fermi ellip-
soids, with given Fermi momenta and a relative veloc-
ity [34]. In ref. [34] a method was developed to extrap-
olate nuclear-matter DB results to CNM configurations.
The CNM self-energies are applied to heavy-ion collisions
in the Local (phase space) Configuration Approximation
(LCA) [14,15,35], where the anisotropic phase space is lo-
cally parametrised by a CNM configuration. In this paper,
the LCA approximation is only briefly discussed, details
can be found in [14,15,34]. We shall discuss the density
and momentum dependence of the DB mean fields and
their application to the CNM approximation in terms of
an effective equation of state [36].

This paper is organised as follows: The DB formal-
ism and the different DB models are reviewed in sect. 2.
The CNM approximation is discussed in sect. 3. In sect. 4
the transport equation and their numerical realization is
outlined. Then we discuss the density and momentum de-
pendence of the DB mean fields in ground-state nuclear
matter, and the LCA approximation for anisotropic phase
space configurations in heavy-ion collisions. Section 5 con-
tains the results of transport calculations based on the DB
mean fields of refs. [24,26] in the LCA approximation. We
compare different components of collective flow with re-
spect to its energy, centrality, transverse momentum and
rapidity dependence. It is found that both models are able
to qualitatively describe the experimental results, but in
details one finds model dependences on the collective flow
observables.

2 The DB approach

Brueckner theory provides a microscopic model which ac-
counts for two-body correlations in the ladder approxi-
mation in medium in the Bethe-Goldstone or the Bethe-
Salpeter equation in the relativistic case,

T = V + i

∫
V GGT . (1)

The correlations of the Green functions, or wave functions
respectively, are shifted to the effective in-medium interac-
tion, i.e. the T -matrix (or G-matrix) [23]. The in-medium
propagator obeys a Dyson equation

G = G0 +
∫

G0ΣG (2)

and is dressed by a self-energy Σ obtained in Hartree-Fock
approximation from the T -matrix

Σ = −i

∫
T G . (3)

The coupled set of equations (1)-(3) has to be solved
self-consistently. In this procedure the bare interaction
V , iterated in the Bethe-Salpeter equation, is sandwiched
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between dressed in-medium spinors. This feature is ab-
sent in non-relativistic approaches and introduces an ad-
ditional density dependence which is responsible for the
significantly improved saturations properties compared to
non-relativistic G-matrix calculations [37,38]. The non-
relativistic Brueckner approach leads to too large satu-
ration densities (e.g., ρsat = 0.2 fm−3 in [37] and ρsat =
0.24 fm−3 in [38]) and predicts a rather small compress-
ibility (K = 180 MeV in [35,37]). The introduction of
3-body forces can in principle improve on this in the non-
relativistic case [38].

In contrast to the phenomenological approaches like
QHD [16] and to effective field theory [19,21] this ap-
proach is essentially parameter free. The only free pa-
rameters are those of the NN-interaction, namely those
of the realistic OBE potentials, which are fixed by the
free-scattering problem [28]. The success of the DB model
indicates that it already accounts for the most important
set of diagrams to describe nuclear matter. A further in-
clusion of particle-hole correlations around the DB mean
field also can ensure thermodynamical consistency in the
form of the Hugenholtz-van-Hove theorem [39,40].

In the present work we employ the results of two differ-
ent DB calculations, those of ref. [24] and the more recent
ones of ref. [26], denoted as DBHM and DBT, respectively,
in the following. We will briefly characterise the difference
between these two calculations. One difference is the use of
different OBE potentials; in [24] a version of the Gronin-
gen potential and in [26] the Bonn A potential. In both
cases the same set of six non-strange mesons with masses
below 1 GeV is used and the fit to the NN phase shifts is
of similar quality, however, the actual model parameters
(coupling constants and form factors) are different. The
main difference between these two approaches has a more
complicated origin, which is discussed in detail in [25,26].
The DB structure equations (1)-(3) are matrix equations
in spinor space. To determine the Dirac structure of the
self-energy, i.e. the scalar (Σs) and a vector (Σµ) contri-
butions,

Σαβ = 11αβΣs − γµ
αβΣµ , (4)

the T -matrix has to be decomposed into its Lorentz com-
ponents, i.e. scalar, vector, tensor, etc. contributions. This
procedure is not free from ambiguities. Due to identical
matrix elements for positive-energy states pseudo-scalar
and pseudo-vector components cannot uniquely be disen-
tangled for the on-shell T -matrix. However, with a pseudo-
scalar vertex, the pion couples maximally to negative-
energy states which are not included in the standard
Brueckner approach. This is inconsistent with the poten-
tials used since the OBE potentials are based on the no-sea
approximation. Hence, pseudo-scalar contributions due to
the one-π exchange lead to large and spurious contribu-
tions from negative-energy states. In [25] it was shown
that such spurious contributions dominate the momentum
dependence of the nuclear self-energy, and, in particular,
lead to an artificially strong momentum dependence inside
the Fermi sea. It was further demonstrated in [25] that the
method used in [24] fails to cure this problem and in [26]

Table 1. Saturation properties of nuclear matter, i.e. Fermi-
momentum kF, saturation density ρsat, binding energy per par-
ticle E/A, effective mass m∗ and the compression modulus K
in the DB calculations of [24] (DBHM) and [26] (DBT).

kF ρsat E/A m∗ K
(fm−1) (fm−3) (MeV) (MeV) (MeV)

DBHM 1.343 0.164 −13.6 558 250
DBT 1.39 0.185 −16.1 637 230

a new and reliable method was proposed to remove those
spurious contributions from the T -matrix.

The saturation properties of the two DB calculations
are given in table 1. It is seen there that the results of
ter Haar and Malfliet (DBHM) [24] give a slightly better
saturation density compared to [26] (DBT) but too lit-
tle binding. DBT, in contrast, gives a good binding en-
ergy and also meets the empirical range of saturation.
The stiffness of the EOS expressed by the compression
moduli is similar for both approaches. A significant dif-
ference can be observed for the magnitude of the effective
mass but both values are consistent with the knowledge
from finite nuclei on the strength of the spin-orbit force
(500 MeV ≤ m∗ ≤ 700 MeV) [20].

We also note that the relativistic effective mass, i.e.
the Dirac mass m∗ = M − Σs given in table 1, should be
distinguished from the effective mass m∗

NR which in non-
relativistic approaches is used to classify the non-locality
of the mean field [12,13]. The latter is defined by

m∗
NR = |k|

(
∂k0

∂|k|

)−1

(5)

and is approximately m∗
NR ≈ k∗

0 =
√

k2 + m∗2. At ρ0

the two models DBHM/DBT yield the following values
m∗

NR(kF)/M = 0.63/0.73 which can be compared to the
parameters used in refs. [12,13].

The corresponding equations of states are shown in
fig. 1. Both models have a similar density dependence,
however, due to the higher binding energy, DBT lies gen-
erally below DBHM. At high densities the softer char-
acter of DBT becomes a little more pronounced. For
comparison also the widely used Skyrme parameterisa-
tions (soft/hard, denoted by SMD/HMD) with compres-
sion moduli of K = 200/380 MeV [4] are shown. It is seen
that in particular DBT is close to the soft Skyrme pa-
rameterisation up to about 2ρ0 where it starts to become
more repulsive.

Figure 2 shows the density dependence of the mean
field. In the DBT approach the fields are generally smaller
by about 50–100 MeV compared to DBHM. The same
trend can be seen from fig. 3, where the momentum de-
pendence of the scalar and vector potentials at densities
ρ0 = 0.16 fm−3, 2ρ0 and 3ρ0 is shown. In both calculations
scalar and vector fields decrease with increasing momen-
tum in a similar way. Generally, the explicit momentum
dependence is moderate at densities ρ ≤ ρ0 but becomes
pronounced at higher densities. In ref. [24] constant values
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Fig. 1. Equation of states in the DB approaches. Solid line: DB
calculations from [24], dashed line: DB calculations from [26].
For comparison also the soft/hard (SMD/HMD) momentum-
dependent Skyrme parameterisations with a compression mod-
ulus of K = 200/380 MeV [4] are shown.

of Σ are taken for momenta below the Fermi momentum
whereas the results of [26] reflect the full momentum de-
pendence outside and inside the Fermi sea. The difference
in the magnitude of the fields Σs and Σ0 in the two ap-
proaches can be traced back to the different projection
schemes discussed above. With the correct and complete
pseudo-vector description for the pion contributions, the
fields are dominated by the σ and ω contributions and the
other mesons π(pseudo-vector coupling) ρ, η, δ give only
small corrections [25,26].
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Fig. 2. Scalar (top) and vector (bottom) self-energies. The
solid lines are DB calculations from [24], the dashed lines
from [26].
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Fig. 3. Momentum dependence of the scalar (top) and vector
(bottom) self-energies at ρ = 1/2/3ρ0. The solid lines are DB
calculations from [24] and the dashed curves from [26].

Figure 4 shows the real part of the optical
Schroedinger-equivalent nucleon potential, defined as

Uopt = −Σs +
k0

M
Σ0 +

Σ2
s − Σ2

µ

2M
, (6)

in nuclear matter as a function of its laboratory en-
ergy Elab = k0 − M . Note that the definition of an
optical potential is not unique in the literature, e.g. in
refs. [12,41] an optical potential is defined as the differ-
ence of the single-particle energies in the medium and
in free space U = k0 −

√
M2 + k2. The optical poten-

tial defined by eq. (6) is the Schroedinger-equivalent rel-
ativistic potential [24] and can be covariantly defined by
Uopt = (k2

µ − M2)/2M = ((k∗
µ + Σµ)2 − M2)/2M as a

Lorentz scalar. Even a momentum-independent vector po-
tential Σ0 (as in the mean-field approximation of QHD)
leads to a linear energy dependence of the optical potential
(6), i.e. a momentum dependence Σ0(ρ)

2M2 p2. The explicit
momentum dependence of the DB fields falls asymptot-
ically as Σ0,S ∼ (A + B/p) which still leads to a linear
increase of Uopt at large energies. As seen in fig. 4 the DB
model reproduces the empirical optical potential [3] ex-
tracted from proton-nucleus scattering for nuclear matter
at ρ0 reasonably well up to a laboratory energy of about
0.6–0.8 GeV. However, it is seen that the saturation be-
haviour at large momenta cannot be reproduced by DB
calculations. In heavy-ion reactions at incident energies
above 1 AGeV such a saturation behaviour is required
to reproduce transverse flow observables [11]. Thus, DB
mean fields start to become unrealistic around 1 AGeV.
There exists presently no microscopic relativistic calcula-
tion which is able to reproduce this saturation behaviour
of the optical potential. Therefore, we restrict our inves-
tigation of transverse flow observables to an energy range
where the DB fields can be safely applied. At higher en-
ergies one has to rely on phenomenological approaches
where the strength of the vector potential is artificially
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Fig. 4. Energy dependence of the optical potential. The solid
lines are DB calculations from [24], the dashed lines from [26].

suppressed, e.g. by the introduction of additional form
factors [11].

One should be aware that the empirical optical poten-
tial involves densities around ρ0 and does not completely
constrain the mean fields that enter in a heavy-ion colli-
sion, which involve large values of momentum and density.
As a common feature, relativistic DB calculations show a
strong and repulsive momentum dependence also at high
densities [24,26,41] whereas, e.g. the non-relativistic G-
matrix [38] has a much less repulsive high-density be-
haviour. In first order, the strength of the repulsion in
the relativistic case is determined by the magnitude of the
vector field. As can be seen from fig. 4 the two approaches
DBHM and DBT yield similar results at moderate den-
sities ρ ≤ ρ0 but differences become substantial at high
densities. The generally smaller fields of DBT result in a
less repulsive potential at high densities. This behaviour
becomes even more clear from fig. 5 where the optical
potentials taken at the Fermi surface, i.e. at k = kF, are
shown as a function of the density. For comparison also the
potentials of the soft/hard momentum-dependent Skyrme
parameterisations (SMD/HMD) [4] are given. For DBHM
the interplay between density and momentum dependence
of the optical potential is similar to the hard Skyrme force
although the EOS is less repulsive at high densities. On
the other hand, DBT is even more attractive than the soft
Skyrme force at low densities and becomes more repul-
sive than the soft Skyrme force only above 2ρ0. Hence the
character of the mean field obtained by the two DB model
calculations show essential differences although the corre-
sponding EOSs are similar. The test of DB fields in heavy-
ion collisions where high densities (ρ ≈ 2–3ρ0) and mo-
menta greater than the Fermi momentum can be reached,
should allow to differentiate between the two models.

3 The CNM approximation

The DB approach discussed in the previous section de-
scribes equilibrated nuclear matter which is characterised
by one Fermi sphere of a given Fermi momentum. In a
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as a function of density. Solid line: DB calculations from [24];
dashed line: DB calculations from [26]. For comparison also
the soft/hard (SMD/HMD) momentum-dependent Skyrme pa-
rameterisations [4] are shown.
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Fig. 6. Schematic representation of the LDA (nuclear matter)
and LCA (colliding nuclear matter) approximations.

local density approximation (LDA) these self-energies are
directly inserted into the drift term of the RBUU equa-
tion. However, as discussed before, local momentum space
anisotropies are a characteristic feature of energetic heavy-
ion reactions. The time scales where such anisotropies oc-
cur are comparable with the compression phase of the
process [15,32,33]. It was found that the local anisotropic
momentum space can well be parametrised by two inter-
penetrating nuclear-matter currents, i.e. by two Fermi
spheres in momentum space [32,33], or the Colliding Nu-
clear Matter (CNM) [34] which is schematically illustrated
in fig. 6. The application of the relativistic DB model to
CNM configurations has, however, not been realized yet,
but only non-relativistic G-matrix calculations have been
performed for CNM [37].

Therefore in ref. [34] a method was developed to ex-
trapolate DB results to such CNM configurations. The
CNM momentum distribution is constructed as a super-
position of the single currents, i.e.

f12(k∗) = f1(k∗) + f2(k∗) + δf =
Θ(kF1 − k∗

µuµ
1 ) + Θ(kF2 − k∗

µuµ
2 ) + δf , (7)

where fi are the covariant momentum space distributions
of the two NM currents and δf = −f1f2 is a correction
term which takes into account Pauli-blocking effects in
the overlap region of the two nuclear matter currents.
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The corresponding CNM self-energies Σs,0(k;χ) depend
explicitely on momentum and the configuration parame-
ters χ ≡ {kF1 , kF2 , vrel} (Fermi momenta kF1,2 and the
relative velocity vrel). Averaging the CNM configuration,
eq. (7), over momentum leads to mean self-energies which
depend only on the parameters of the CNM momentum
space distributions.

The consideration of anisotropy effects in the CNM ap-
proximation leads to non-equilibrium mean fields, which
essentially differ from those of the equilibrium case. In
analogy to the non-equilibrium self-energies we construct
a non-equilibrium EOS [34], i.e. an equation of state which
depends on the CNM parameters. In order to compare the
compression energies it is useful to subtract the kinetic en-
ergy of the relative motion of the two nuclear-matter cur-
rents which yields the “subtracted” binding energy Ebind

12
of the system. Figure 7 shows these EOSs for different
symmetric (kF ≡ kF1 = kF2) CNM configurations. It is
seen in both models that the effective non-equilibrium
EOS is softer compared to the equilibrium EOS (solid
curves for vanishing relative velocity). However, the dif-
ferent density and momentum dependence of the two DB
models leads to a different magnitude of this softening
effect, in particular with increasing relative velocity.

This softening of the effective EOS in colliding nu-
clear matter can be understood by considering that, in
the participant zone of the reaction, particles which be-
long to projectile and target are separated in momen-
tum space. This geometrical effect works in a similar
way as an additional degree of freedom and leads to a
softening of the effective EOS experienced by the nucle-
ons in such configurations. This type of phase space ef-
fect is not included in standard transport calculations for
heavy-ion collisions, even when momentum-dependent in-
teractions are used [12,13]. Phenomenological mean fields
U(x,k) = Uloc((x))+Unon-loc(x,k) are usually composed

by a local, density-dependent potential Uloc((x)) and
a non-local momentum-dependent part Unon-loc(x,k) =∫

d3k′f(x,k′)V (x,k−k′) with V an effective momentum-
dependent two-body interaction. Whereas Unon-loc(x,k)
accounts properly for the actual momentum space config-
urations f(x,k′), the local part does not depend on the
momentum space. Consequently, Uloc() reflects a density
dependence which is correct in equilibrated nuclear mat-
ter but does not apply to anisotropic momentum space
configurations.

4 The transport model

In the present work heavy-ion collisions are treated by the
relativistic (R)BUU equation [2,14,15]:
{

k∗
µ∂µ

x + [k∗
νFµν + m∗(∂µ

xm∗)] ∂k∗
µ

}
f(x, k∗) = Icoll . (8)

This equation describes the evolution of a classical one-
body phase space distribution f(x, k∗) under the influence
of a self-consistent mean field, or the scalar and vector self-
energies Σs and Σµ. The self-energies determine effective
momenta and masses of the dressed quasi-particles in the
nuclear medium k∗µ = kµ − Σµ, m∗ = M − Σs. The field
strength tensor of the vector field Fµν = ∂µΣν − ∂νΣµ

gives rise to a Lorentz force as in electrodynamics. This
introduces in a most natural way a first-order momen-
tum dependence which in non-relativistic treatments has
to be parameterised explicitely [1,4,10]. The collision term
describes 2-body collisions and is treated by cascade-like
Monte Carlo simulations, as in relativistic versions of the
QMD model [42]. We include the relevant nucleonic exci-
tations at SIS energies, i.e. the ∆(1232) and N∗(1440) res-
onances and their decay to one- and two-pion states. The
cross-sections for elastic and inelastic scattering as well
as differential cross-sections are taken from ref. [43] which
are used also in QMD calculations at SIS energies [44,45].
The drift term of the RBUU equation (8) is numerically
treated in the relativistic Landau-Vlasov method (RLV)
[46]. This is a test particle method, where the test par-
ticles are represented by manifestly covariant Gaussians
in phase space. In order to reduce numerical fluctuations
a number of 50-100 test particles per nucleon was found
to be sufficient here. The nuclei are initialised to fit den-
sity profiles obtained from self-consistent Thomas-Fermi
calculations [46]. For both models (DBT and DBHM) we
adjust the test particle distributions to the same reference
distribution. The corresponding initialisations are stable
over the durations of the considered reactions. Energy mo-
mentum conservation is fulfilled with an accuracy of 3–5%
of the initial kinetic centre-of-mass energy of the colliding
nuclei.

The anisotropic phase space effects discussed above are
incorporated in heavy-ion collisions by applying the CNM
or non-equilibrium DB mean fields in the framework of
a Local Configuration Approximation (LCA) [14,15,33].
In this approach the phase space is parametrised locally
by a CNM configuration where the invariant configuration
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with the FOPI data [47].

parameters χ are directly determined from the phase space
distribution f(x, k∗). Transport calculations have shown
that the collective flow is reduced if the non-equilibrium
effects are taken into account [15] which is consistent with
a softening of the effective EOS in heavy-ion collisions as
discussed above.

5 Collective flow effects

In this section different types of collective flow observ-
ables are investigated in transport calculations using the
DBHM/DBT mean fields in the local phase space config-
uration approximation (LCA). To compare with experi-
ments, the same methods are used for centrality selection
and reaction plane determination, and the theoretical re-
sults are subjected to filter routines to simulate the exper-
imental detector efficiencies, if necessary. Since we mainly
compare to results from the FOPI Collaboration [6,31,47,
48] these correspond to the FOPI (Phase-I or Phase-II) set
up. These filters are sensitive to fragment distributions.
Thus we also generate fragments in the final state of the
reaction (at ≈ 100–200 fm/c depending on the incident
energy) using a phenomenological phase space coalescence
model. The coalescence parameters in coordinate and mo-
mentum space are separately adjusted for both models
DBT and DBHM to fit the experimental mass distribu-
tions of light fragments (Z ≤ 3) [15,49]. After the cluster
formation we apply the same procedure for the reaction
plane reconstruction as the FOPI group. The correspond-
ing corrections are very close to those obtained with the
IQMD model [50].

Criteria for the determination of the centrality class of
an event are the multiplicity of charged particles (PMUL)
and/or the ratio of transversal to longitudinal energy
(ERAT) [51]. As an example, in figs. 8 and 9 these ob-
servables are shown for protons at an energy of 0.4 AGeV
and compared to FOPI data [47,51]. Figure 8 displays the
differential cross-section dσ/d(ERAT). Large ERAT val-
ues correspond to central reactions whereas small values
indicate semi-peripheral and peripheral reactions [15,47,
51]. A qualitative agreement with experiment is achieved
for both mean fields, with DBHM somewhat overestimat-
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Fig. 9. Multiplicity of charged particles. Solid line: DB calcu-
lations from [24]; dashed line: DB calculations from [26].

ing the data. At small ERAT values below about 0.2 the
quantity dσ/d(ERAT) is strongly affected by trigger ef-
fects and drops very rapidly. As discussed in [47] model
calculations tend to strongly overestimate the data below
0.3, which is due to detector cuts which remove the projec-
tile remnant. Since such remnants, i.e. very heavy clusters,
are not formed in transport calculations the cross-section
is overpredicted in very peripheral collisions although the
total reaction cross-section coincides with the experimen-
tal one.

In fig. 9 the multiplicity distributions dσ/d(PMUL)
are shown. Also here the agreement with experiment is
reasonable for DBHM and quite good for DBT. Par-
ticularly, we can reproduce the plateau (in logarithmic
scale) of these distributions which is used in the central-
ity selection. Altogether, the good agreement with exper-
iment makes the centrality selection reliable using either
the PMUL or ERAT observable. In the following we will
mainly use the PMUL criterion. The correlation between
multiplicity and centrality intervals is defined as in exper-
iments in the following way: the lower limit of the high-
est multiplicity bin, called PM5, is fixed at half of the
plateau value, and the remaining multiplicity range is di-
vided into four equally spaced intervals, denoted by PM4
to PM1. PM5 then corresponds to most central reactions,
and PM4 and PM3 to semi-central and peripheral ones,
respectively [51].

5.1 Nuclear stopping

We start the flow analysis with the longitudinal distri-
butions which are characterised in terms of the rapidity
Ycm = 1

2 ln (1 + βcm)/(1 − βcm). Here the normalised ra-
pidity Y (0) = Ycm/Y proj

cm is considered.
The rapidity distributions are shown in fig. 10 for dif-

ferent centrality classes (using the ERAT selection [47]).
This observable is strongly affected by detector cuts [47,
51], which is reflected in the asymmetry of these distri-
butions relative to the cm-rapidity, due to the angular
limitations of the FOPI detector (Phase-I) [51].

It is seen that both models are able to generally repro-
duce the experimental results. Stopping is influenced most
strongly by the choice of the NN cross-sections, which are
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solid lines are DB calculations from [24], the dashed lines
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the same in both models. An indirect influence also from
the EOS can be expected since a softer and less repulsive
EOS leads to more compression and thus to more col-
lisions. However, the differences are not very pronounced
which reflects the fact that the EOSs are still similar in the
explored density regime and do not differ too much even
at the maximal densities reach in central reactions (ρ ≈ 2–
3 ρ0). In peripheral collisions, where the deflection of spec-
tator matter by the repulsive momentum-dependent com-
ponent of the mean field plays a more dominant role,
the rapidity distributions show bigger differences. Similar
trends have been observed in in ref. [47] with soft/hard
Skyrme forces.

5.2 In-plane flow

Next we consider the emission of matter projected onto
the reaction plane described by the mean in-plane or side-
ward flow [5,6]. Figure 11 compares the mean in-plane
proton flow 〈px/A〉 in semi-central (PM4) Au + Au colli-
sions at incident energies of 0.25, 0.4 and 0.6 AGeV to the
FOPI data from [52]. Both models reproduce the energy-
dependent increase of the proton flow and are generally in
good agreement with the data. We observe that DBHM
leads to a stronger in-plane flow in the spectator rapidity
region whereas the slope near midrapidity Y (0) ∼ 0 is less
affected by the differences in density and momentum de-
pendence of the mean fields. At 0.6 AGeV DBHM starts
to overpredict the slope of the in-plane flow, whereas DBT
is still in reasonable agreement with experiment. This re-
flects again the more repulsive character of the DBHM
forces which becomes more pronounced with increasing
energy, in particular in the spectator region Y (0) ∼ 1.
On the other hand, DBT describes the in-plane flow well
around midrapidity but slightly under predicts it in the
spectator region.

The situation is more clearly seen when the mean di-
rected flow P dir

x , i.e. the in-plane flow integrated over the
forward hemisphere (Y (0) ≥ 0), is considered. In fig. 12
the excitation function of P dir

x is compared to the FOPI
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Fig. 11. Mean in-plane transverse flow of protons versus nor-
malised rapidity for semi-central (PM4) Au + Au collisions at
0.25, 0.4 and 0.6 AGeV beam energy. The solid lines are DB
calculations from [24], the dashed lines from [26]. The experi-
mental results are taken from [52].

data [52], again for PM4. P dir
x is a measure for the over-

all repulsion experienced by the reaction. The compari-
son with data shows that both microscopic models can
explain the experimental results relatively well. However,
above 0.4 AGeV the experimental excitation function of
P dir

x shows a saturation behaviour which is not completely
reproduced. Here, as already seen in fig. 11, DBT is in
good agreement with experiment at higher energies but
underpredicts the flow at lower energies. For DBHM the
situation is just opposite. Due to the FOPI acceptance
P dir

x is dominated by the bounce-off of spectator matter at
Y (0) ∼ 1 (see the corresponding rapidity distributions in
fig. 10) which explains the low value of DBT at 0.4 AGeV.
The more repulsive character of the DBHM mean fields, in
particular at high densities, produces a bounce-off of the
spectator remnants in the reaction plane, resulting in too
high transverse momenta near spectator rapidities at ener-
gies above 0.6 AGeV. Since the maximal densities reached
in the model calculations are changing very little between
0.4 and 0.8 GeV the slope of the P dir

x excitation function
is determined mostly by the momentum dependence of
the mean field and less by the density dependence of the
EOS. This may be considered as a way to test the av-
erage momentum dependence of the models. However, as
discussed below an integrated observable reflects the aver-
age dynamics which is dominated by densities around ρ0.
To extract more decisive information on the momentum
dependence at supranormal densities, differential observ-
ables should be considered.

As a differential observable the dependence of the in-
plane flow on transverse momentum pt has recently at-
tracted great interest. While the global behavior of the
transverse flow, as expressed by P dir

x or 〈px/A〉, gives
an average over the entire evolution of the collision, the
pt-dependence allows to obtain information on different
stages of the reaction. High pt nucleons, but also pi-
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Solid line: DB calculations from [24]; dashed line: DB calcula-
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ons [45], originate from the early and high density phase
of the reaction. This is a general feature of heavy-ion
collisions and seems to hold at bombarding energy from
SIS [13] to AGS and SPS energies [53]. In ref. [12] it was
pointed out that the pt-dependence of the transverse flow
in peripheral reactions is particularly sensitive to the mo-
mentum dependence of the nuclear mean field at supra-
normal densities. Consistent with this observation, in [13]
it was demonstrated that the emission time of high pt

particles at midrapidity coincides well with the high den-
sity phase of the reactions. To be more quantitative, in
fig. 13 we consider the correlation between the averaged
density 〈ρB〉 at which the particles are emitted and the
transverse momentum pt. Exemplarily a semi-peripheral
(b = 6 fm) Au + Au reaction at 0.4 AGeV is considered.
Since particles interact with the surrounding matter over
the entire duration of the reaction more or less strongly
—with the mean field and by binary collisions— it is a
priori not clear how to define an emission time and, corre-
spondingly, a density from which the particles carry infor-
mation. It is, however, natural to select that time and that
corresponding density where the particles experience their
most violent changes in momentum. This can be done by
the following quantity:

〈ρB〉 =
∑

i

∫
dtρB(xi, t)

|ṗi|
|pi|

/
∑

i

∫
dt

|ṗi|
|pi|

, (9)

where the index i runs over all baryons. Equation (9) sam-
ples over the densities weighted by the relative changes of
the momenta. This is a generalisation of the “freeze-out”
density because it takes the whole reaction history into ac-
count. Since experimentally only the final-state momenta
are detected, this quantity is useful to establish a cor-
relation between final observables and the stages of the
reaction on which the particles carry information. The re-
sulting emission densities are generally moderate because
one averages over the entire phase space, i.e. over partic-
ipant and spectator regions, and over the complete reac-
tion history including the dilute expansion phase. Apply-
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Fig. 13. The density distribution which is correlated with
the dynamical history of the particles is shown for different

p
(0)
t cuts for a semi-central (b = 6 fm) Au + Au collisions at

0.4 AGeV.

ing different pt-cuts (p(0)
t = pt/pproj

cm ) one sees that the low
pt-particles and hence the bulk of the nucleons experiences
a dynamical evolution which takes mainly place at den-
sities below saturation density when integrated over the
complete space-time of the reaction. The high pt-particles
(p(0)

t > 0, 5), in contrast, are governed by larger densities.
As a consequence, they probe the momentum dependence
of the optical potential at supranormal densities. In fig. 13
as in the calcualtions below (fig. 14) we considered pro-
jectile rapidities, but the observed behaviour is even more
pronounced in the midrapidity region.

The flow and its p
(0)
t -dependence has been discussed in

terms of a Fourier analysis of the experimental azimuthal
distribution [54]

dN

dφ
(p(0)

t , Y (0)) = v0(1 + 2v1 cos(φ) + 2v2 cos(2φ)) . (10)

In eq. (10) v0 is a normalisation constant,
v1(p

(0)
t , Y (0)) describes the in-plane collective flow

and v2(p
(0)
t , Y (0)) the emission perpendicular to the

reaction plane, also called elliptic flow. The quantities
v1,2 can be determined directly as v1 = 〈px/pt〉 and

v2 = 〈(p2
x − p2

y)/p2
t 〉, where pt =

√
p2

x + p2
y is the

transverse momentum per nucleon.
Figure 14 shows the p

(0)
t -dependence of the in-plane

flow (v1) at normalised rapidities 0.5 ≤ Y (0) ≤ 0.7 for
semi-central (PM4) Au + Au reactions at 0.4 AGeV inci-
dent energy for protons (Z = 1) and for light fragments
(Z = 2 + 3).

A significant dependence of the differential in-plane
flow on the DB model is observed. At low transverse mo-
menta (p(0)

t ≤ 0.2) the two models do not show large dif-
ferences. Since the mean transverse flow is dominated by
low pt-particles the 〈px/A〉 observable therefore does not
differentiate very much between the two models in the
present situation. Consequently, in fig. 11 the two curves
for 〈px/A〉 (0.4 AGeV) are very similar to each other in
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Fig. 14. In-plane flow in terms of the first Fourier coefficient
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the considered rapidity range. However, the difference be-
tween the models becomes more pronounced when higher
transverse momenta (p(0)

t ≥ 0.2) are studied. In fig. 14
DBT reproduces the data very well for both, protons and
light fragments, whereas DBHM overpredicts the flow sig-
nificantly which reflects its more repulsive character at
baryon densities above ρ0. The comparison to data favours
a weaker repulsion at higher densities as predicted by
DBT. In contrast to the global P dir

x observable the quan-
tity v1(p

(0)
t , Y (0)) is more sensitive to high density matter

in the participant region.
The situation is similar for light fragments (Z = 2+3)

which, however, show a stronger collectivity compared to
free nucleons, as also seen by the higher value of v2 in
fig. 14. This can be understood by assuming that heav-
ier fragments are mainly formed in the spectator regions,
whereas the free nucleons originate from the entire phase
space. Thus, one obtains on the average a higher mean
transverse momentum 〈px/A〉 for fragments than for nu-
cleons. This scenario of the fragment formation is consis-
tent with the findings in ref. [49] that the spectator en-
ters into an instability region with conditions which are
near the experimental ones for a liquid-gas phase transi-
tion [56].

5.3 Out-of-plane flows

A preferential out-of-plane emission of particles, the so-
called squeeze-out, is characterised by negative values of
the second Fourier coefficient v2 in eq. (10), whereas a
positive value of v2 indicates in-plane flow [54]. A related
variable to characterise the azimuthal anisotropy of parti-
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Fig. 15. Azimuthal distributions at midrapidity (|∆Y (0)| ≤
0.15) for semi-central Au + Au collisions at 0.6 AGeV beam
energy (data from [50]).

cle emission is the squeeze-out ratio RN defined by [57]

RN = (N(Φ = 90◦) + N(Φ = 270◦))/(N(Φ = 0◦)
+N(Φ = 180◦)) = (1 − 2v2)/(1 + 2v2) . (11)

In terms of RN an isotropic emission corresponds to
RN = 1, RN > 1 indicates squeeze-out and RN < 1 a
preferential in-plane emission. At lower energies squeeze-
out is mainly due to shadowing of the participant particles
by the spectators and it is therefore most pronounced for
midrapidity particles. A sensitive way to probe the mo-
mentum dependence of the mean field is the transverse
momentum dependence of the elliptic flow v2. In contrast
to central reactions where the squeeze-out is influenced by
both, the static and the momentum-dependent part of the
mean field, peripheral reactions allow to decouple the mo-
mentum dependence to some extent from the static part.
In ref. [12] this has been demonstrated for v2 at high pt in
peripheral reactions and was also confirmed by the inves-
tigations of [13]. Since high pt-particles almost exclusively
stem from the high density phase they probe the momen-
tum dependence of the optical potential at supranormal
densities, as was seen also in fig. 13.

First in fig. 15 we consider semi-central (PM4) reac-
tions. It shows the azimuthal distributions at midrapid-
ity for all charged particles (nucleons plus fragments) in
Au + Au at 0.6 AGeV. The calculations are compared to
experimental results from FOPI [50] for Z = 1 and Z = 2
fragments. The data show a stronger out-of-plane emission
for Z = 2 fragments relative to those for nucleons which is
due to to the higher collectivity of fragments as discussed
above. Due to limited statistics, the theoretical values in
fig. 15 are given for all charged particles. We observe a
qualitatively good agreement between theory and exper-
iments, although both calculations slightly overestimate
the experimental squeeze-out signal.

Figure 16 shows the pt-dependence of the elliptic flow
v2 in peripheral Au + Au collisions (PM3 multiplicity in-
terval, bmean ∼ 7 fm) at 0.4 AGeV. Consistent with
the picture that squeeze-out is mainly due to shadowing,
which is most effective in the early high density phase of
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the reaction, the elliptic flow becomes increasingly nega-
tive with increasing pt. A physical explanation for this be-
haviour is that a strong repulsive momentum-dependent
component of the nuclear interaction deflects these par-
ticles from the central zone more violently. This leads to
enhanced shadowing by the spectator remnants inside the
reaction plane and a stronger emission out-of-plane. This
effect is clearly seen for the two types of interactions used
here: Due to the stronger repulsive momentum depen-
dence of the DBHM forces at supranormal densities the
squeeze-out signal increases much stronger with pt than
for DBT, which on the other hand, is closer to the data
of [48].

This behaviour is also consistent with the findings of
ref. [48] where soft and hard Skyrme forces within the
framework of the QMD model were subjected to a com-
parison of the same observable. The softer equations of
state (soft Skyrme in [48] and DBT in the present case)
yield a slower increase of v2 and are in reasonable agree-
ment with experiment. However, in ref. [48] both version
of Skyrme forces have an identical momentum dependence
whereas in the present case DBHM is significantly more
repulsive at large densities. In the analysis of ref. [13], on
the other hand, parameterisations were used which show
the same density dependence, i.e. the same EOS, but dif-
fered in their momentum dependence. A stronger repulsive
character of the model, expressed by both, a stiffer EOS
and/or a stronger momentum dependence generally re-
sults in a stronger squeeze-out signal for high pt-particles.
The authors of ref. [13] favour a parameterisation (HM in
ref. [13]) which yields results for this observable close to
DBHM in our case. The comparison to the data of [48]
in fig. 16 supports, however, a weaker momentum depen-
dence at supranormal densities.

In fig. 17 the same analysis is performed for the
Ru + Ru system. Here the differential components of the
in-plane and out-of plane flow in terms of the Fourier coef-
ficients v1 and v2 as a function of the transverse momen-

0 0.5 1 1.5 2

Pt
(0)

-0.4

-0.3

-0.2

-0.1

0

0.1
FOPI
DBHM    
DBF   

0 0.5 1 1.5 2

Pt
(0)

-0.4

-0.3

-0.2

-0.1

0

0.1

PM4 (b mean ~3fm) PM3 (b mean ~6fm)

v1 v2

Fig. 17. Transverse momentum dependence of the first (v1,
left) and second (v2, right) azimuthal flow Fourier coefficients
for the system Ru + Ru at 0.4 AGeV incident energy ex-
tracted in rapidity intervals of −0.7 < Y (0) < −0.5 (left) and
−0.3 < Y (0) < −0.1 (right) for semi-central (PM4) and pe-
ripheral (PM3) reactions, respectively (data from [31]).

tum and rapidity are shown. The rapidity intervals are
−0.7 < Y (0) < −0.5 and −0.3 < Y (0) < −0.1 for the v1

and v2 analysis, respectively. Both, DBHM and DBT are
in fair agreement with the FOPI data [31] on the v2 ob-
servable. However, the pt-dependence of the in-plane flow
v1 strongly depends on the model. As already observed for
the Au + Au system (fig. 14) DBHM strongly overpredicts
the flow v1 at intermediate pt. Thus, we conclude that the
differences observed in the v1 observable are due to the
different momentum dependence of the fields. The v2 ob-
servable shows here much less model dependence than,
e.g., in the Au + Au system. In the smaller system the
compressional effects are smaller which reduces the sensi-
tivity to the different momentum dependence.

In fig. 18 the centrality dependence of the squeeze-
out ratio RN at midrapidity (|∆Y (0)| < 0.15) for parti-
cles with high transverse momenta (0.4 < p

(0)
t < 0.55) is

shown. The decrease of the squeeze-out ratio RN at higher
impact parameters can be explained by the strong vector
repulsion of the nuclear mean field. Again both models can
reproduce the centrality dependence of the experimental
data qualitatively, but not in detail. The DBHM calcu-
lations overpredict the data at low impact parameters,
whereas DBT underpredicts the data for peripheral col-
lisions. Similar results have been found in recent studies
of the FOPI Collaboration in comparison with the IQMD
model with soft/hard Skyrme forces [31]. Finally, fig. 19
shows the excitation function of the total elliptic flow v2 at
midrapidity. With increasing beam energy the emission is
preferentially perpendicular to the reaction plane (v2 < 0)
which approaches a maximum around 0.4 AGeV and then
decreases again. This behaviour can be understood by
shadowing and compression effects as discussed in detail in
ref. [58]. Again both models reproduce the general trend of
a sample of experimental data from FOPI [48], EOS [58],
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Plastic Ball [6], LAND [6] and E895 [58] shown in fig. 19.
However, with DBHM the maximum of negative v2 val-
ues is slightly shifted to higher energies and the absolute
values are larger. The experimental data show strong vari-
ations in the magnitude of the v2 coefficient which cover
the range of the theoretical calculations. However, DBT
better reproduces the maximum at the correct energy and
lies closer in absolute magnitude to the most recent data
from FOPI [48]. Assuming that the latter are the most
reliable measurements, e.g. with respect to reaction plane
corrections etc., the comparison to experiment favours the
DBT mean fields.

6 Summary

We investigated the collective nucleon flow in heavy-ion
collisions at intermediate energies (0.15–1 AGeV) within

a relativistic BUU transport model with mean fields based
on relativistic Dirac-Brueckner-Hartree-Fock (DB) calcu-
lations for nuclear matter. The anisotropy of the local
momentum space in the participant region of heavy-ion
reactions was taken into account in the colliding nuclear
matter approximation.

We compared two different DB fields, those of ter Haar
and Malfliet (DBHM) and the more recent calculations
performed by the Tübingen group (DBT). From a theo-
retical point of view the latter ones have a stronger phys-
ical foundation since spurious contributions from a strong
coupling of a pseudo-scalar πNN vertex to negative-energy
states were removed by an improved projection scheme for
the in-medium T -matrix. The DBT model EOS is slightly
softer (K = 250/230 MeV for DBHM/DBT) and the ef-
fective mass is significantly larger (m∗ = 558/637 MeV
for DBHM/DBT) than for the DBHM model. This re-
sults in smaller fields and a less repulsive optical poten-
tial for DBT. The smaller repulsion of the DBT model
is also expressed in a terms of a larger non-local effective
mass (m∗

NR = 0.63/0.73 M for DBHM/DBT) which is
commonly used in non-relativistic approaches in order to
classify the strength of the momentum dependence of the
potential.

Both models yield a reasonable description of in-plane
and out-of-plane flow observables. A more detailed com-
parison to data, in particular the transverse momentum
dependence of v1 and v2 favours the softer EOS and the
less repulsive character of the DBT optical potential at
supranormal densities. This observation is consistent with
the information obtained from subthreshold K+ produc-
tion where also the scenario of a soft EOS is supported [59,
36]. At 0.6 and 0.8 AGeV DBT also yields a very accu-
rate description of the transverse in-plane flow whereas
at lower energies the in-plane flow requires some more re-
pulsion as provided by the DBHM model. Interestingly, a
similar observation was made in the non-relativistic ap-
proach of ref. [13].

In summary, the microscopic DB approach, where no
parameters are adjusted to the nuclear-matter saturation
properties nor to the empirical optical nucleon-nucleus po-
tential, predicts a density and momentum dependence of
the mean field which to a large extent is consistent with
the observations from heavy-ion collisions.

We are grateful to A. Andronic from FOPI for many discus-
sions concerning the interpretation of data.
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